
Object Oriented Programming
Lecture No. 9

Ing. Lukáš Slánský

Univerzita Pardubice

5. 1. 2009

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 1 / 13



Contents

1 Design Patterns

2 Distributed Object Computing

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 2 / 13



Design Patterns

Design pattern is a general repeatable solution to a comonly occuring
problem in software design.

It’s not a finished design. It is a description for how to solve a
problem.

It is like algorithm (that solves computational problem) – but solves
design problem.
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Design Patterns Classification

Design Patterns are divided into many types:

Creational Patterns – deal with object creation mechanisms.

Structural Patterns – ease the design by identifying a simple way to
realize relations between entities.

Behavioral Patterns – identify common communication patterns
between objects.
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Factory Method Pattern
Factory Method Pattern

is a Creational Pattern that deals with the
problem of creating object without specifying the exact class of object that
will be created.
Factory method is a static method that returns new implemented object.

class Complex {

public static Complex fromCartesian(double re, double im){

return new Complex(re, im);

}

public static Complex fromPolar(double mod, double ang) {

return new Complex(mod*cos(ang), mod*sin(ang));

}

private Complex(double re, double im) {

...

}

Complex c=Complex.fromPolar(1, pi);

}
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Singleton Pattern
Singleton Pattern

is a Creational Pattern thet is used to restrict
instatntion of a class to one object.

class Singleton {

private Singleton() {} //private constructor!!!

private final static Singleton INSTANCE;

public static Singleton getInstance() {

if (INSTANCE==null) {

INSTANCE=new Singleton();

}

return INSTANCE;

}

}
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Adapter Pattern
Adapter Pattern

is a Structural Pattern that ’adapts’ one interface for a
class int one that client expects.

class DList<T> { //Double-Linked List

public void insertHead(T o) { ... }

public void insertTail(T o) { ... }

public T removeHead() { ... }

public T removeTail() { ... }

public int getNumItems() { ... }

... constructors and other methods ...

}

interface Stack<T> {

void push(T o);

T pop();

bool isEmpty();

}
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//Double-Linked List implemented by Stack

class DListImpStack<T> implements Stack<T> {

private DList<T> list=new DList<T>();

public void push(T o) {

list.insertTail(o);

}

public T pop() {

return list.removeTail();

}

public bool isEmpty() {

return list.getNumItems()==0;

}

}
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Observer Pattern

Observer Pattern

is a Behavioral Pattern that is used to observe the state
of an object.
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Further Reading on Design Patterns

http://en.wikipedia.org/wiki/Design_pattern_(computer_

science)

http://objekty.vse.cz/Objekty/Vzory

Fowler, Martin. Patterns of Enterprise Application Architecture.

Gamma, Erich. Design Patterns: Elements of Reusable
Object-Oriented Software.
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Distributed Object Computing

Programs can be written as distributed. Some offer services to others.

Services can be distributed over network.

Services and programs can be written in different programming
languages.
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Common things

IDL – Interface Definition Language
I Definition of classes that will be exported by service provider.
I It’s language independent.

IDL file is compiled into target language skeleton file.

Service connects to IIOP (Internet Inter-ORB Protocol) server or
something similar (ORPC, JRMP).

Client connects to server with request and server forwards this request
to service provider.

Response and exceptions goes through server as well.
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Further Reading on Distributed Object Computing

http://my.execpc.com/~gopalan/misc/compare.html

http://en.wikipedia.org/wiki/CORBA

http://en.wikipedia.org/wiki/Distributed_Component_

Object_Model

http:

//en.wikipedia.org/wiki/Java_remote_method_invocation
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