
Object Oriented Programming
Lecture No. 9

Ing. Lukáš Slánský

Univerzita Pardubice

5. 1. 2009

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 1 / 13



Contents

1 Design Patterns

2 Distributed Object Computing

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 2 / 13



Design Patterns

Design pattern is a general repeatable solution to a comonly occuring
problem in software design.

It’s not a finished design. It is a description for how to solve a
problem.

It is like algorithm (that solves computational problem) – but solves
design problem.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 3 / 13



Design Patterns

Design pattern is a general repeatable solution to a comonly occuring
problem in software design.

It’s not a finished design. It is a description for how to solve a
problem.

It is like algorithm (that solves computational problem) – but solves
design problem.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 3 / 13



Design Patterns

Design pattern is a general repeatable solution to a comonly occuring
problem in software design.

It’s not a finished design. It is a description for how to solve a
problem.

It is like algorithm (that solves computational problem) – but solves
design problem.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 3 / 13



Design Patterns Classification

Design Patterns are divided into many types:

Creational Patterns – deal with object creation mechanisms.

Structural Patterns – ease the design by identifying a simple way to
realize relations between entities.

Behavioral Patterns – identify common communication patterns
between objects.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 4 / 13



Design Patterns Classification

Design Patterns are divided into many types:

Creational Patterns – deal with object creation mechanisms.

Structural Patterns – ease the design by identifying a simple way to
realize relations between entities.

Behavioral Patterns – identify common communication patterns
between objects.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 4 / 13



Design Patterns Classification

Design Patterns are divided into many types:

Creational Patterns – deal with object creation mechanisms.

Structural Patterns – ease the design by identifying a simple way to
realize relations between entities.

Behavioral Patterns – identify common communication patterns
between objects.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 4 / 13



Design Patterns Classification

Design Patterns are divided into many types:

Creational Patterns – deal with object creation mechanisms.

Structural Patterns – ease the design by identifying a simple way to
realize relations between entities.

Behavioral Patterns – identify common communication patterns
between objects.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 4 / 13



Factory Method Pattern
Factory Method Pattern

is a Creational Pattern that deals with the
problem of creating object without specifying the exact class of object that
will be created.
Factory method is a static method that returns new implemented object.

class Complex {

public static Complex fromCartesian(double re, double im){

return new Complex(re, im);

}

public static Complex fromPolar(double mod, double ang) {

return new Complex(mod*cos(ang), mod*sin(ang));

}

private Complex(double re, double im) {

...

}

Complex c=Complex.fromPolar(1, pi);

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 5 / 13



Factory Method Pattern
Factory Method Pattern is a Creational Pattern that deals with the
problem of creating object without specifying the exact class of object that
will be created.

Factory method is a static method that returns new implemented object.

class Complex {

public static Complex fromCartesian(double re, double im){

return new Complex(re, im);

}

public static Complex fromPolar(double mod, double ang) {

return new Complex(mod*cos(ang), mod*sin(ang));

}

private Complex(double re, double im) {

...

}

Complex c=Complex.fromPolar(1, pi);

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 5 / 13



Factory Method Pattern
Factory Method Pattern is a Creational Pattern that deals with the
problem of creating object without specifying the exact class of object that
will be created.
Factory method is a static method that returns new implemented object.

class Complex {

public static Complex fromCartesian(double re, double im){

return new Complex(re, im);

}

public static Complex fromPolar(double mod, double ang) {

return new Complex(mod*cos(ang), mod*sin(ang));

}

private Complex(double re, double im) {

...

}

Complex c=Complex.fromPolar(1, pi);

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 5 / 13



Factory Method Pattern
Factory Method Pattern is a Creational Pattern that deals with the
problem of creating object without specifying the exact class of object that
will be created.
Factory method is a static method that returns new implemented object.

class Complex {

public static Complex fromCartesian(double re, double im){

return new Complex(re, im);

}

public static Complex fromPolar(double mod, double ang) {

return new Complex(mod*cos(ang), mod*sin(ang));

}

private Complex(double re, double im) {

...

}

Complex c=Complex.fromPolar(1, pi);

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 5 / 13



Factory Method Pattern
Factory Method Pattern is a Creational Pattern that deals with the
problem of creating object without specifying the exact class of object that
will be created.
Factory method is a static method that returns new implemented object.

class Complex {

public static Complex fromCartesian(double re, double im){

return new Complex(re, im);

}

public static Complex fromPolar(double mod, double ang) {

return new Complex(mod*cos(ang), mod*sin(ang));

}

private Complex(double re, double im) {

...

}

Complex c=Complex.fromPolar(1, pi);

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 5 / 13



Singleton Pattern
Singleton Pattern

is a Creational Pattern thet is used to restrict
instatntion of a class to one object.

class Singleton {

private Singleton() {} //private constructor!!!

private final static Singleton INSTANCE;

public static Singleton getInstance() {

if (INSTANCE==null) {

INSTANCE=new Singleton();

}

return INSTANCE;

}

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 6 / 13



Singleton Pattern
Singleton Pattern is a Creational Pattern thet is used to restrict
instatntion of a class to one object.

class Singleton {

private Singleton() {} //private constructor!!!

private final static Singleton INSTANCE;

public static Singleton getInstance() {

if (INSTANCE==null) {

INSTANCE=new Singleton();

}

return INSTANCE;

}

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 6 / 13



Singleton Pattern
Singleton Pattern is a Creational Pattern thet is used to restrict
instatntion of a class to one object.

class Singleton {

private Singleton() {} //private constructor!!!

private final static Singleton INSTANCE;

public static Singleton getInstance() {

if (INSTANCE==null) {

INSTANCE=new Singleton();

}

return INSTANCE;

}

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 6 / 13



Singleton Pattern
Singleton Pattern is a Creational Pattern thet is used to restrict
instatntion of a class to one object.

class Singleton {

private Singleton() {} //private constructor!!!

private final static Singleton INSTANCE;

public static Singleton getInstance() {

if (INSTANCE==null) {

INSTANCE=new Singleton();

}

return INSTANCE;

}

} Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 6 / 13



Adapter Pattern
Adapter Pattern

is a Structural Pattern that ’adapts’ one interface for a
class int one that client expects.

class DList<T> { //Double-Linked List

public void insertHead(T o) { ... }

public void insertTail(T o) { ... }

public T removeHead() { ... }

public T removeTail() { ... }

public int getNumItems() { ... }

... constructors and other methods ...

}

interface Stack<T> {

void push(T o);

T pop();

bool isEmpty();

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 7 / 13



Adapter Pattern
Adapter Pattern is a Structural Pattern that ’adapts’ one interface for a
class int one that client expects.

class DList<T> { //Double-Linked List

public void insertHead(T o) { ... }

public void insertTail(T o) { ... }

public T removeHead() { ... }

public T removeTail() { ... }

public int getNumItems() { ... }

... constructors and other methods ...

}

interface Stack<T> {

void push(T o);

T pop();

bool isEmpty();

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 7 / 13



Adapter Pattern
Adapter Pattern is a Structural Pattern that ’adapts’ one interface for a
class int one that client expects.

class DList<T> { //Double-Linked List

public void insertHead(T o) { ... }

public void insertTail(T o) { ... }

public T removeHead() { ... }

public T removeTail() { ... }

public int getNumItems() { ... }

... constructors and other methods ...

}

interface Stack<T> {

void push(T o);

T pop();

bool isEmpty();

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 7 / 13



Adapter Pattern
Adapter Pattern is a Structural Pattern that ’adapts’ one interface for a
class int one that client expects.

class DList<T> { //Double-Linked List

public void insertHead(T o) { ... }

public void insertTail(T o) { ... }

public T removeHead() { ... }

public T removeTail() { ... }

public int getNumItems() { ... }

... constructors and other methods ...

}

interface Stack<T> {

void push(T o);

T pop();

bool isEmpty();

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 7 / 13



//Double-Linked List implemented by Stack

class DListImpStack<T> implements Stack<T> {

private DList<T> list=new DList<T>();

public void push(T o) {

list.insertTail(o);

}

public T pop() {

return list.removeTail();

}

public bool isEmpty() {

return list.getNumItems()==0;

}

}

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 8 / 13



Observer Pattern

Observer Pattern

is a Behavioral Pattern that is used to observe the state
of an object.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 9 / 13



Observer Pattern

Observer Pattern is a Behavioral Pattern that is used to observe the state
of an object.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 9 / 13



Observer Pattern

Observer Pattern is a Behavioral Pattern that is used to observe the state
of an object.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 9 / 13



Further Reading on Design Patterns

http://en.wikipedia.org/wiki/Design_pattern_(computer_

science)

http://objekty.vse.cz/Objekty/Vzory

Fowler, Martin. Patterns of Enterprise Application Architecture.

Gamma, Erich. Design Patterns: Elements of Reusable
Object-Oriented Software.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 10 / 13

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://objekty.vse.cz/Objekty/Vzory


Distributed Object Computing

Programs can be written as distributed. Some offer services to others.

Services can be distributed over network.

Services and programs can be written in different programming
languages.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 11 / 13



Distributed Object Computing

Programs can be written as distributed. Some offer services to others.

Services can be distributed over network.

Services and programs can be written in different programming
languages.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 11 / 13



Distributed Object Computing

Programs can be written as distributed. Some offer services to others.

Services can be distributed over network.

Services and programs can be written in different programming
languages.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 11 / 13



Common things

IDL – Interface Definition Language
I Definition of classes that will be exported by service provider.
I It’s language independent.

IDL file is compiled into target language skeleton file.

Service connects to IIOP (Internet Inter-ORB Protocol) server or
something similar (ORPC, JRMP).

Client connects to server with request and server forwards this request
to service provider.

Response and exceptions goes through server as well.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 12 / 13



Common things

IDL – Interface Definition Language
I Definition of classes that will be exported by service provider.
I It’s language independent.

IDL file is compiled into target language skeleton file.

Service connects to IIOP (Internet Inter-ORB Protocol) server or
something similar (ORPC, JRMP).

Client connects to server with request and server forwards this request
to service provider.

Response and exceptions goes through server as well.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 12 / 13



Common things

IDL – Interface Definition Language
I Definition of classes that will be exported by service provider.
I It’s language independent.

IDL file is compiled into target language skeleton file.

Service connects to IIOP (Internet Inter-ORB Protocol) server or
something similar (ORPC, JRMP).

Client connects to server with request and server forwards this request
to service provider.

Response and exceptions goes through server as well.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 12 / 13



Further Reading on Distributed Object Computing

http://my.execpc.com/~gopalan/misc/compare.html

http://en.wikipedia.org/wiki/CORBA

http://en.wikipedia.org/wiki/Distributed_Component_

Object_Model

http:

//en.wikipedia.org/wiki/Java_remote_method_invocation

Ing. Lukáš Slánský (UPa) Object Oriented Programming 5. 1. 2009 13 / 13

http://my.execpc.com/~gopalan/misc/compare.html
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://en.wikipedia.org/wiki/Java_remote_method_invocation
http://en.wikipedia.org/wiki/Java_remote_method_invocation

	Design Patterns
	Distributed Object Computing

