
Object Oriented Programming
Lecture No. 6

Ing. Lukáš Slánský

Univerzita Pardubice

1. 12. 2008

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 1 / 17



Contents

1 Three-tier Architecture
Presentation Tier
Business (Application) Tier
Data Tier

2 Creating object dynamically
Destructors

3 Class Diagram in UML
Generalisation Construction – Inheritance
Association Construction
Composition
Aggregation

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 2 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),
I data storage and maintenance (database, filesystem, . . . ),
I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 3 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),

I data storage and maintenance (database, filesystem, . . . ),
I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 3 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),
I data storage and maintenance (database, filesystem, . . . ),

I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 3 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),
I data storage and maintenance (database, filesystem, . . . ),
I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 3 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),
I data storage and maintenance (database, filesystem, . . . ),
I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 3 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),
I data storage and maintenance (database, filesystem, . . . ),
I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 3 / 17



Presentation Tier

Presentation tier displays contents to user, do prints etc.

It has tools for cooperation between user and application – user can
send commands to IS.

In Server-Client systems is presentation tier in client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 4 / 17



Presentation Tier

Presentation tier displays contents to user, do prints etc.

It has tools for cooperation between user and application

– user can
send commands to IS.

In Server-Client systems is presentation tier in client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 4 / 17



Presentation Tier

Presentation tier displays contents to user, do prints etc.

It has tools for cooperation between user and application – user can
send commands to IS.

In Server-Client systems is presentation tier in client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 4 / 17



Presentation Tier

Presentation tier displays contents to user, do prints etc.

It has tools for cooperation between user and application – user can
send commands to IS.

In Server-Client systems is presentation tier in

client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 4 / 17



Presentation Tier

Presentation tier displays contents to user, do prints etc.

It has tools for cooperation between user and application – user can
send commands to IS.

In Server-Client systems is presentation tier in client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 4 / 17



Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier mostly in server side, part is
on client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 5 / 17



Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier mostly in server side, part is
on client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 5 / 17



Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier mostly in server side, part is
on client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 5 / 17



Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier mostly in server side, part is
on client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 5 / 17



Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier

mostly in server side, part is
on client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 5 / 17



Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier mostly in server side, part is
on client side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 5 / 17



Data Tier

Data Tier is responsible for all data maintenance.

Data are served to business tier (and then to presentation tier).

It takes all entered (changed) data from business tier as well as other
request for data manipulation.

In Server-Client systems is data tier in server side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 6 / 17



Data Tier

Data Tier is responsible for all data maintenance.

Data are served to business tier (and then to presentation tier).

It takes all entered (changed) data from business tier as well as other
request for data manipulation.

In Server-Client systems is data tier in server side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 6 / 17



Data Tier

Data Tier is responsible for all data maintenance.

Data are served to business tier (and then to presentation tier).

It takes all entered (changed) data from business tier as well as other
request for data manipulation.

In Server-Client systems is data tier in server side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 6 / 17



Data Tier

Data Tier is responsible for all data maintenance.

Data are served to business tier (and then to presentation tier).

It takes all entered (changed) data from business tier as well as other
request for data manipulation.

In Server-Client systems is data tier in

server side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 6 / 17



Data Tier

Data Tier is responsible for all data maintenance.

Data are served to business tier (and then to presentation tier).

It takes all entered (changed) data from business tier as well as other
request for data manipulation.

In Server-Client systems is data tier in server side.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 6 / 17



Three-tier design requirements

All tiers are interchengable.

I Data tier that works with data on HDD,
I data tier that works with Oracle DB,
I data tier that works with streamer memory,
I . . .

Interface must be confirmed while developement.
I Best usage is creating abstract class that specifies interface (or make

interface in Java-like languages).
I Inherit class from the abstract one – this should implement all methods.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 7 / 17



Three-tier design requirements

All tiers are interchengable.
I Data tier that works with data on HDD,
I data tier that works with Oracle DB,
I data tier that works with streamer memory,
I . . .

Interface must be confirmed while developement.
I Best usage is creating abstract class that specifies interface (or make

interface in Java-like languages).
I Inherit class from the abstract one – this should implement all methods.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 7 / 17



Three-tier design requirements

All tiers are interchengable.
I Data tier that works with data on HDD,
I data tier that works with Oracle DB,
I data tier that works with streamer memory,
I . . .

Interface must be confirmed while developement.

I Best usage is creating abstract class that specifies interface (or make
interface in Java-like languages).

I Inherit class from the abstract one – this should implement all methods.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 7 / 17



Three-tier design requirements

All tiers are interchengable.
I Data tier that works with data on HDD,
I data tier that works with Oracle DB,
I data tier that works with streamer memory,
I . . .

Interface must be confirmed while developement.
I Best usage is creating abstract class that specifies interface (or make

interface in Java-like languages).

I Inherit class from the abstract one – this should implement all methods.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 7 / 17



Three-tier design requirements

All tiers are interchengable.
I Data tier that works with data on HDD,
I data tier that works with Oracle DB,
I data tier that works with streamer memory,
I . . .

Interface must be confirmed while developement.
I Best usage is creating abstract class that specifies interface (or make

interface in Java-like languages).
I Inherit class from the abstract one – this should implement all methods.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 7 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);

varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 8 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method

I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;

procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 9 / 17



Class Diagram

Class Diagrams shows class relations:

inheritance structure,

associations, and

relations between the whole and parts.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 10 / 17



Class Diagram

Class Diagrams shows class relations:

inheritance structure,

associations, and

relations between the whole and parts.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 10 / 17



Class Diagram

Class Diagrams shows class relations:

inheritance structure,

associations, and

relations between the whole and parts.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 10 / 17



Class Diagram

Class Diagrams shows class relations:

inheritance structure,

associations, and

relations between the whole and parts.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 10 / 17



Generalisation Construction

Generalisation:

Shows inheritance.

Is written as empty triangle arrow.
I The arrow points to ancestor.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 11 / 17



Generalisation Construction

Generalisation:

Shows inheritance.

Is written as empty triangle arrow.
I The arrow points to ancestor.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 11 / 17



Generalisation Construction

Generalisation:

Shows inheritance.

Is written as empty triangle arrow.
I The arrow points to ancestor.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 11 / 17



Multiple Inheritance

Multiple Inheritance:

Descendant inherits everything from its’ ancestors.

This construction is not recommended – it is possible to replace it by
aggregation or interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 12 / 17



Multiple Inheritance

Multiple Inheritance:

Descendant inherits everything from its’ ancestors.

This construction is not recommended – it is possible to replace it by
aggregation or interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 12 / 17



Multiple Inheritance

Multiple Inheritance:

Descendant inherits everything from its’ ancestors.

This construction is not recommended – it is possible to replace it by
aggregation or interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 12 / 17



Multiple Inheritance

Multiple Inheritance:

Descendant inherits everything from its’ ancestors.

This construction is not recommended – it is possible to replace it by
aggregation or interfaces.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 12 / 17



Association Construction

Association in UML represents mutable population of interconecting
relations between object.

E.g. dogs and its’ owners:
I Each of dogs has its’ owner that can be changed.
I Each person owns any count of dogs (even none).

Name of association relation – DogOwning.

Role of both classes in the association relation – owner, ownee.

Cardinality (multiplicity) of the relation.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 13 / 17



Association Construction

Association in UML represents mutable population of interconecting
relations between object.

E.g. dogs and its’ owners:

I Each of dogs has its’ owner that can be changed.
I Each person owns any count of dogs (even none).

Name of association relation – DogOwning.

Role of both classes in the association relation – owner, ownee.

Cardinality (multiplicity) of the relation.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 13 / 17



Association Construction

Association in UML represents mutable population of interconecting
relations between object.

E.g. dogs and its’ owners:
I Each of dogs has its’ owner that can be changed.

I Each person owns any count of dogs (even none).

Name of association relation – DogOwning.

Role of both classes in the association relation – owner, ownee.

Cardinality (multiplicity) of the relation.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 13 / 17



Association Construction

Association in UML represents mutable population of interconecting
relations between object.

E.g. dogs and its’ owners:
I Each of dogs has its’ owner that can be changed.
I Each person owns any count of dogs (even none).

Name of association relation – DogOwning.

Role of both classes in the association relation – owner, ownee.

Cardinality (multiplicity) of the relation.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 13 / 17



Association Construction

Association in UML represents mutable population of interconecting
relations between object.

E.g. dogs and its’ owners:
I Each of dogs has its’ owner that can be changed.
I Each person owns any count of dogs (even none).

Name of association relation – DogOwning.

Role of both classes in the association relation – owner, ownee.

Cardinality (multiplicity) of the relation.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 13 / 17



Association Direction

Arrow shows in which direction is it easy to find other participant(s)
of the relation.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 14 / 17



Association with Multiple Classes

Class can be associated with more classes.

It has multiple roled.

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 15 / 17



Composition

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 16 / 17



Aggregation

Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 17 / 17


	Three-tier Architecture
	Presentation Tier
	Business (Application) Tier
	Data Tier

	Creating object dynamically
	Destructors

	Class Diagram in UML
	Generalisation Construction – Inheritance
	Association Construction
	Composition
	Aggregation


