
Object Oriented Programming
Lecture No. 6

Ing. Lukáš Slánský
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Ing. Lukáš Slánský (UPa) Object Oriented Programming 1. 12. 2008 2 / 17



Three-tier Architecture

Well-designed program (information system) is composed of several
logically separated parts:

I Visualisation of data to user (UI, WEB, thin client, . . . ),
I data storage and maintenance (database, filesystem, . . . ),
I data processing.

Well-managable program should be divided into independent parts –
blocks, tiers.

Tiers are communicating through the interfaces.
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Presentation Tier

Presentation tier displays contents to user, do prints etc.

It has tools for cooperation between user and application – user can
send commands to IS.

In Server-Client systems is presentation tier in client side.
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Business (Application) Tier

Business Tier implements main logic of application.

It takes commands from presentation tier and reacts on them.

All (or most) computations is held here as well as validation etc.

It coordinates data flow between presentation and data tier.

In Server-Client systems is business tier mostly in server side, part is
on client side.
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Data Tier

Data Tier is responsible for all data maintenance.

Data are served to business tier (and then to presentation tier).

It takes all entered (changed) data from business tier as well as other
request for data manipulation.

In Server-Client systems is data tier in server side.
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Three-tier design requirements

All tiers are interchengable.

I Data tier that works with data on HDD,
I data tier that works with Oracle DB,
I data tier that works with streamer memory,
I . . .

Interface must be confirmed while developement.
I Best usage is creating abstract class that specifies interface (or make

interface in Java-like languages).
I Inherit class from the abstract one – this should implement all methods.
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Creating object dynamically

Enhanced syntax of New procedure for using with objects:

procedure New(p:^CClass, Init:Constructor);

I This allocates object from class CClass on heap and invokes
constructor.

Enhanced syntax of function New for using with objects:

function New(T:^CClass, Init:Constructor):^CClass;

I This allocates object from the class CClass, invokes constructor and
returns pointer to it.

I Used with inheritance. It is possible to create object from descendat
class and store it into variable with type of ancestor:

varAncestor:=New(PDescendant, Init);
varAncestor:=New(PDescendant, Init(10));
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Destroying Objects & Destructors
Object should be freed when no longer needed.

procedure Dispose(p:^CClass);

Each object should free all allocated memory prior to own destruction.

I This could be accomplished with a method
I . . . or with special ”method” called destructor.

type CClass=object
...
destructor Done;
...

end;
procedure Dispose(p:^CClass, Done:Destructor);

Dispose(object, Done);

Destructors are (almost) everytime virtual.
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Class Diagram

Class Diagrams shows class relations:

inheritance structure,

associations, and

relations between the whole and parts.
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Generalisation Construction

Generalisation:

Shows inheritance.

Is written as empty triangle arrow.
I The arrow points to ancestor.
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Multiple Inheritance

Multiple Inheritance:

Descendant inherits everything from its’ ancestors.

This construction is not recommended – it is possible to replace it by
aggregation or interfaces.
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Association Construction

Association in UML represents mutable population of interconecting
relations between object.

E.g. dogs and its’ owners:
I Each of dogs has its’ owner that can be changed.
I Each person owns any count of dogs (even none).

Name of association relation – DogOwning.

Role of both classes in the association relation – owner, ownee.

Cardinality (multiplicity) of the relation.
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Association Direction

Arrow shows in which direction is it easy to find other participant(s)
of the relation.
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Association with Multiple Classes

Class can be associated with more classes.

It has multiple roled.
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Composition
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Aggregation
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