
Contents

Contents

1 Relations between objects 1
1.1 How to Distinguish Objects? . 2
1.2 Example of Objects Composition 2

2 Consequences of Inheritance 3
2.1 Attributes Placement in Memory 4

3 Early and Late Binding 4
3.1 Changing Methods During Inheritance 4
3.2 Virtual methods . 6

1 Relations between objects

Relations between objects
”Object can contain other objects”.

• Object uses other object – association.

– Interaction just like between car-driver.

– Both object can exist (and have sense) even without the other.

• Object contain other objects – aggregation.

– I. e. crowd-man. The crowd contains (is aggregation) unknown num-
ber of mans.

– Both object can exist without the other. Outer object (crowd) can
loose some functionality without the inner (man).

– The inner object can be part of several aggregates.

• Object is composed of other objects – composition.

– Interaction just like between – dog-head.

– Dog is meaningless without head. And head is meaningless without
dog.

• Object can have other object as the essence of its’ existence – inheritance.

– Interaction just like between vehicle-car.

– Inner object (vehicle) can exist without outer one (car).Outer object
is meaningless without inner one.

1.1 How to Distinguish Objects?

How to Distinguish Objects?

1. Describe the functionality of program (or module, component, . . .) in
common language.

2. Every noun is (or should be) an Object.

3. Every verb describes method and/or relation.

1.2 Example of Objects Composition

Example of Objects Composition
Design calculator that will work according to reverse polish notation. It can

process basic math functions (+, -, *, /).

HP-55 TI-59 Unix programm dc

Example of Objects Composition II.

• ”Data are entered through keyboard and displayed on display.”

• ”Pressing enter on keyboard stores input into stack.”

• ”Pressing operator (e.g. +) on keyboard retrieves data from stack and
passes them to processor.”

• ”Processor computes the result and pushes it into stack.”

2

Example of Objects Composition III.
Basic structure of program blocks:

• Computing part (simulation of simple processor).

– No input, no output!

– As one of its’ part is accumulator (stack) – aggregation.

• Interactive part (display, keyboard).

– Just comunicates with user and computer.

– Only simple link to processor (it can be changed to other type) –
association.

2 Consequences of Inheritance

Consequences of Inheritance

• Descendant has all all features just like ascendant:

– it has all attributes like ascendat,

– it has all methods like ascendant.

• Descendant is capable of acting instead of ascendant.

• Object from class of descendant can be assigned to object from class of
ascendant.

Attributes Inheritance in Practice

type CPerson=object
firstName:string;
surname:string;

end;
CPersonUPa=object(CPerson)
faculty:string;

end;
CStudent=object(CPersonUPa)
year:integer;

end;
CEmployee=object(CPersonUPa)
office:string;
fee:integer;

end;

3

Attributes Inheritance in Practice

procedure printFaculty(person:CPersonUPa);
begin
WriteLn(person.faculty);

end;
...
var p:CPerson;

u:CPersonUPa;
s:CStudent;
e:CEmployee;

...
printFaculty(u);
printFaculty(s);
printFaculty(e);
printFaculty(p); Not possible!!! (there is no

"faculty" attribute)

2.1 Attributes Placement in Memory

Attributes Placement in Memory

• Attributes in object are placed in order like in source code.

• Methods have no influence in placement of attributes.

• When adding more attributes in descendant - new attributes are pleced
behind original.

3 Early and Late Binding

3.1 Changing Methods During Inheritance

Changing Methods During Inheritance
Method in inherited class can be redefined:

• Method must have the same name.

• Parameters and return type can differ.

• For usage (and further inheritance) is used only redefined and the old one
is overlayed.

4

Early and Late Binding

• Compiler knowns which function (better which method from which class)
should be invoked during compilation.

– Early binding = in the beginning (during compilation) are paired
callings and placement of methods in memory.

– Used in all previous cases of method calling.

• Program decides which method should be invoked during run of program.

– Late binding = method address (placement) is decided in time of
invoking.

– Will be used in some cases of redefined methods.

– This case must be explicitly ordered.

Book Using Early Binding

type EObjectType=(picture, paragraph);
type PPrintableObject=^CPrintableObject;

CPrintableObject=object
procedure print; {Abstract method}
objectType:EObjectType;

end;
CPicture=object(CPrintableObject)
procedure print;

end;
CParagraph=object(CPrintableObject)
procedure print;

end;
CBook=object
printableObjects:array[...] of PPrintableObject;
procedure print;

end;

Book Using Early Binding

procedure CBook.print;
var i:integer;
begin
for i:=1 to printableObjectCount do
begin
case printableObjects[i].objectType of
pictyre: CPicture(printableObjects[i]^).print;
paragraph: CParagraph(printableObjects[i]^).print;

5

end;
end;

end;

Book Using Late Binding

procedure CBook.print;
var i:integer;
begin
for i:=1 to printableObjectCount do
printableObjects[i]^.print;

end;

Book Using Late Binding

type EObjectType=(picture, paragraph);
type PPrintableObject=^CPrintableObject;

CPrintableObject=object
procedure print;virtual; {Abstract method}
objectType:EObjectType;

end;
CPicture=object(CPrintableObject)
procedure print;virtual;

end;
CParagraph=object(CPrintableObject)
procedure print;virtual;

end;
CBook=object
printableObjects:array[...] of PPrintableObjects;
procedure print;

end;

3.2 Virtual methods

Virtual methods

• The VMT (Virtual Methods Table – tabulka virtuálńıch metod) is created
when defining virtual method.

– VMT contains pointers to methods that should be invoked in pro-
gram intends calling one of virtual methods.

– Each object carries unique VMT as one of the attributes.

• VMT is using during calling virtual methods.

6

Using Virtual Methods
Some preconditions must be fulfilled for using virtual methods:

• Virtual method must have the same declaration (i.e. same attributes and
return type).

• Class must contain special method called constructor E.g.: constructor
init;

– Constructor fills VMT before running its’ code.

– Constructor must be called before first usage of the object.

– If you use virtual method before calling the constructor, the conse-
quences are inpredictable (program mostly crashes).

7

