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Ing. Lukáš Slánský
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Inheritance

Most of classes in real life can be ordered in some type of hierarchy

I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes
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ISA Relation

ISA relation:

I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals
I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring
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Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes
I . . . and probably some more attributes

Dog has all animals’ methods
I . . . and probably some more methods
I Some methods can differ in implementation (more later)
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Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)

I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called descendant (č. potomek)

Mammal is in relation to dog calles ancestor (č. p̌redek)
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Using inheritance in Pascal

type CAnimal=object
private

Weight:Real;
...

public
procedure feed;
procedure sleep(howLong:Real);
...

end;
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Object Inheritance Limitations

You can inherit only from one ancestor

I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten
I Methods’ implementation can be altered – through redefining or

polymorphism (more later)
I Some good object-oriented languages (Java, C++, not Pascal) can

distinguish between methods (and functions) according to number and
type of parameters or return type
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When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA
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Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA
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