
Object Oriented Programming
Lecture No. 2

Ing. Lukáš Slánský

Faculty of Electical Engineering and Informatics, University of Pardubice

13. 10. 2007

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 1 / 9



Contents

1 Inheritance
Inheritance Properties

2 When to Use Inheritance?

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 2 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy

I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are

kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are kitchen appliances

I Kitchen appliances, computers, audiotechnic and others are electircal
appliances

I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are

electircal
appliances

I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations

(ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



Inheritance

Most of classes in real life can be ordered in some type of hierarchy
I Fridge, cofee-maker, microwave and others are kitchen appliances
I Kitchen appliances, computers, audiotechnic and others are electircal

appliances
I . . .

For this type of hierarchy are typical ISA relations (ISA = is a)

Hierarchy can be written by graph of classes

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 3 / 9



ISA Relation

ISA relation:

I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals
I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .

I ISA relation is not symetric – Not all animals are dogs (or birds, or
reptiles, . . . ); it is antisymetric

I ISA relation is transitive – All mammals are animals, therefore all dogs
are animals

I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric

– Not all animals are dogs (or birds, or
reptiles, . . . ); it is antisymetric

I ISA relation is transitive – All mammals are animals, therefore all dogs
are animals

I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . )

; it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals
I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric

I ISA relation is transitive – All mammals are animals, therefore all dogs
are animals

I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive

– All mammals are animals, therefore all dogs
are animals

I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals

I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals
I ISA relation is reflexive

– All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals
I ISA relation is reflexive – All dogs are dogs

I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



ISA Relation

ISA relation:
I All dogs are animals, all birds are animals, all reptiles are animals, . . .
I ISA relation is not symetric – Not all animals are dogs (or birds, or

reptiles, . . . ); it is antisymetric
I ISA relation is transitive – All mammals are animals, therefore all dogs

are animals
I ISA relation is reflexive – All dogs are dogs
I Mathematically said - ISA reation is partial orderring

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 4 / 9



Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes
I . . . and probably some more attributes

Dog has all animals’ methods
I . . . and probably some more methods
I Some methods can differ in implementation (more later)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 5 / 9



Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes

I . . . and probably some more attributes

Dog has all animals’ methods
I . . . and probably some more methods
I Some methods can differ in implementation (more later)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 5 / 9



Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes
I . . . and probably some more attributes

Dog has all animals’ methods
I . . . and probably some more methods
I Some methods can differ in implementation (more later)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 5 / 9



Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes
I . . . and probably some more attributes

Dog has all animals’ methods

I . . . and probably some more methods
I Some methods can differ in implementation (more later)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 5 / 9



Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes
I . . . and probably some more attributes

Dog has all animals’ methods
I . . . and probably some more methods

I Some methods can differ in implementation (more later)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 5 / 9



Class Properties in Hierarchy

What relation is between classes ”dog” and ”animal”?

Dog has all animals’ attributes
I . . . and probably some more attributes

Dog has all animals’ methods
I . . . and probably some more methods
I Some methods can differ in implementation (more later)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 5 / 9



Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)

I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called descendant (č. potomek)

Mammal is in relation to dog calles ancestor (č. p̌redek)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 6 / 9



Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)
I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called descendant (č. potomek)

Mammal is in relation to dog calles ancestor (č. p̌redek)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 6 / 9



Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)
I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called

descendant (č. potomek)

Mammal is in relation to dog calles ancestor (č. p̌redek)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 6 / 9



Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)
I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called descendant (č. potomek)

Mammal is in relation to dog calles ancestor (č. p̌redek)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 6 / 9



Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)
I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called descendant (č. potomek)

Mammal is in relation to dog calles

ancestor (č. p̌redek)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 6 / 9



Terminilogy of OOP

Relation between animal and dog is called inheritance (č. děděńı)
I Dog takes (inherits) all its’ attributes and methods

Dog is in relation to mammal called descendant (č. potomek)

Mammal is in relation to dog calles ancestor (č. p̌redek)

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 6 / 9



Using inheritance in Pascal

type CAnimal=object
private

Weight:Real;
...

public
procedure feed;
procedure sleep(howLong:Real);
...

end;

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 7 / 9



Using inheritance in Pascal

type CAnimal=object
private

Weight:Real;
...

public
procedure feed;
procedure sleep(howLong:Real);
...

end;
CDog=object

private
...

public
procedure bark;
...

end;

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 7 / 9



Using inheritance in Pascal

type CAnimal=object
private

Weight:Real;
...

public
procedure feed;
procedure sleep(howLong:Real);
...

end;
CDog=object(CMammal)

private
...

public
procedure bark;
...

end;

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 7 / 9



Object Inheritance Limitations

You can inherit only from one ancestor

I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten
I Methods’ implementation can be altered – through redefining or

polymorphism (more later)
I Some good object-oriented languages (Java, C++, not Pascal) can

distinguish between methods (and functions) according to number and
type of parameters or return type

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 8 / 9



Object Inheritance Limitations

You can inherit only from one ancestor
I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten
I Methods’ implementation can be altered – through redefining or

polymorphism (more later)
I Some good object-oriented languages (Java, C++, not Pascal) can

distinguish between methods (and functions) according to number and
type of parameters or return type

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 8 / 9



Object Inheritance Limitations

You can inherit only from one ancestor
I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten

I Methods’ implementation can be altered – through redefining or
polymorphism (more later)

I Some good object-oriented languages (Java, C++, not Pascal) can
distinguish between methods (and functions) according to number and
type of parameters or return type

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 8 / 9



Object Inheritance Limitations

You can inherit only from one ancestor
I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten
I Methods’ implementation can be altered

– through redefining or
polymorphism (more later)

I Some good object-oriented languages (Java, C++, not Pascal) can
distinguish between methods (and functions) according to number and
type of parameters or return type

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 8 / 9



Object Inheritance Limitations

You can inherit only from one ancestor
I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten
I Methods’ implementation can be altered – through redefining or

polymorphism (more later)

I Some good object-oriented languages (Java, C++, not Pascal) can
distinguish between methods (and functions) according to number and
type of parameters or return type

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 8 / 9



Object Inheritance Limitations

You can inherit only from one ancestor
I There are (rare) languages with multiple inheritance – e.g. C++

Neither attributes nor methods can be forgotten
I Methods’ implementation can be altered – through redefining or

polymorphism (more later)
I Some good object-oriented languages (Java, C++, not Pascal) can

distinguish between methods (and functions) according to number and
type of parameters or return type

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 8 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer

I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector

I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point

I Circle (and vector) can contain point – but there is other type of
relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point

– but there is other type of
relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9



When to Use Inheritance?

If there is hierarchical ISA relation between classes
I One class is specialisation of other one

Right usage:

Class man is ancestor for classes employee and customer
I Because both employee and customer are mans. . .

Wrong usage:

Class point is ancestor for classes circle or vector
I Neither circle nor vector is point
I Circle (and vector) can contain point – but there is other type of

relation, not ISA

Ing. Lukáš Slánský (FEI UPa) Object Oriented Programming 13. 10. 2007 9 / 9


	Inheritance
	Inheritance Properties

	When to Use Inheritance?

